Databases

Explain the terms in the table below.
	Data

	

	Information

	

	Database

	

	Column/Field

	

	Row/Record

	

	Table/File

	

	Data types – Text, Number, Date/time, Currency, Autonumber, Yes/No, OLE Object, Memo

	

	

	

	

	

	

	

	

	Flat-file Database

	

	Relational Database

	

	Why use a computerised database?

	

	Primary key

	

	Foreign key

	

	Types of relationship – One-to-many, One-to-one, Many-to-many

	

	

	

	

	Queries

	

	Forms

	

Relational databases
Five rules:
1. Data must be atomic – one piece of data per field. Eg. First name and last name must be in two separate fields
2. No duplication of data – one piece of data must be in one field only. Eg. Don’t enter date of birth and age, as they represent the same data item
3. Field independence – modifying the contents of one field must not force you to modify another data item
4. No calculation result in the fields – the fields would not be independent in such a case. Eg price inclusive of VAT is the result of a calculation on the price exclusive of VAT
5. A single index per table – this is called the ‘primary key’

Student Mobile Phones
Create an Access Database that records the details of each pupil’s mobile phone. Initially that will be the student’s name, the make and model of their phone and the phone’s operating system.
[bookmark: _GoBack]There is a flat-file of mobile phones (see “accompanying database”) that you could use on: http://agbonline.co.uk/SKE.html#Databases_SQL

SQL
SQL is a standard language for accessing and manipulating databases

What is SQL?
· SQL stands for Structured Query Language
· SQL lets you access and manipulate databases
· SQL is an ANSI (American National Standards Institute) standard

What Can SQL do?
· SQL can execute queries against a database
· SQL can retrieve data from a database
· SQL can insert records in a database
· SQL can update records in a database
· SQL can delete records from a database
· SQL can create new databases
· SQL can create new tables in a database
· SQL can create stored procedures in a database
· SQL can create views in a database
· SQL can set permissions on tables, procedures, and views

Work through the first few exercises on the w3schools website http://www.w3schools.com/sql/default.asp , down to ‘SQL Between’
Here is the SQL Quick Reference from w3schools:

	SQL Statement
	Syntax

	AND / OR
	SELECT column_name(s)
FROM table_name
WHERE condition
AND|OR condition

	ALTER TABLE
	ALTER TABLE table_name
ADD column_name datatype
or
ALTER TABLE table_name
DROP COLUMN column_name

	AS (alias)
	SELECT column_name AS column_alias
FROM table_name
or
SELECT column_name
FROM table_name AS table_alias

	BETWEEN
	SELECT column_name(s)
FROM table_name
WHERE column_name
BETWEEN value1 AND value2

	CREATE DATABASE
	CREATE DATABASE database_name

	CREATE TABLE
	CREATE TABLE table_name
(
column_name1 data_type,
column_name2 data_type,
column_name2 data_type,
...
)

	CREATE INDEX
	CREATE INDEX index_name
ON table_name (column_name)
or
CREATE UNIQUE INDEX index_name
ON table_name (column_name)

	CREATE VIEW
	CREATE VIEW view_name AS
SELECT column_name(s)
FROM table_name
WHERE condition

	DELETE
	DELETE FROM table_name
WHERE some_column=some_value
or
DELETE FROM table_name
(Note: Deletes the entire table!!)
DELETE * FROM table_name
(Note: Deletes the entire table!!)

	DROP DATABASE
	DROP DATABASE database_name

	DROP INDEX
	DROP INDEX table_name.index_name (SQL Server)
DROP INDEX index_name ON table_name (MS Access)
DROP INDEX index_name (DB2/Oracle)
ALTER TABLE table_name
DROP INDEX index_name (MySQL)

	DROP TABLE
	DROP TABLE table_name

	EXISTS
	IF EXISTS (SELECT * FROM table_name WHERE id = ?)
BEGIN
--do what needs to be done if exists
END
ELSE
BEGIN
--do what needs to be done if not
END

	GROUP BY
	SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name

	HAVING
	SELECT column_name, aggregate_function(column_name)
FROM table_name
WHERE column_name operator value
GROUP BY column_name
HAVING aggregate_function(column_name) operator value

	IN
	SELECT column_name(s)
FROM table_name
WHERE column_name
IN (value1,value2,..)

	INSERT INTO
	INSERT INTO table_name
VALUES (value1, value2, value3,....)
or
INSERT INTO table_name
(column1, column2, column3,...)
VALUES (value1, value2, value3,....)

	INNER JOIN
	SELECT column_name(s)
FROM table_name1
INNER JOIN table_name2
ON table_name1.column_name=table_name2.column_name

	LEFT JOIN
	SELECT column_name(s)
FROM table_name1
LEFT JOIN table_name2
ON table_name1.column_name=table_name2.column_name

	RIGHT JOIN
	SELECT column_name(s)
FROM table_name1
RIGHT JOIN table_name2
ON table_name1.column_name=table_name2.column_name

	FULL JOIN
	SELECT column_name(s)
FROM table_name1
FULL JOIN table_name2
ON table_name1.column_name=table_name2.column_name

	LIKE
	SELECT column_name(s)
FROM table_name
WHERE column_name LIKE pattern

	ORDER BY
	SELECT column_name(s)
FROM table_name
ORDER BY column_name [ASC|DESC]

	SELECT
	SELECT column_name(s)
FROM table_name

	SELECT *
	SELECT *
FROM table_name

	SELECT DISTINCT
	SELECT DISTINCT column_name(s)
FROM table_name

	SELECT INTO
	SELECT *
INTO new_table_name [IN externaldatabase]
FROM old_table_name
or
SELECT column_name(s)
INTO new_table_name [IN externaldatabase]
FROM old_table_name

	SELECT TOP
	SELECT TOP number|percent column_name(s)
FROM table_name

	TRUNCATE TABLE
	TRUNCATE TABLE table_name

	UNION
	SELECT column_name(s) FROM table_name1
UNION
SELECT column_name(s) FROM table_name2

	UNION ALL
	SELECT column_name(s) FROM table_name1
UNION ALL
SELECT column_name(s) FROM table_name2

	UPDATE
	UPDATE table_name
SET column1=value, column2=value,...
WHERE some_column=some_value

	WHERE
	SELECT column_name(s)
FROM table_name
WHERE column_name operator value

